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Recently, problems concerning the dynamic behavior of imperfect continuous media under var- 
ious types of actions have been widely investigated. The method of Laplace transformation is 
very convenient for describing physical processes concerning unsteady phenomena. In vis- 
coelastic media two complications are added: the representation of the properties of a med- 
ium depending on time, and the inversion of the obtained solutions containing this additional 
complication. Certain approximate methods of inversion in the analysis of viscoelastic stresses 
are discussed in [1]. In [2, 3] a discussion is given for an effective method of constructing 
the solution of unsteady problems for finite and for infinite imperfect media using auxiliary 
functions, and a solution is presented for a half-space. Making use of the idea of the inver- 
sion of transforms, discussed in [4], in [5] a solution is obtained and a complete picture is 
presented for the dynamics of the variation of the stress field in a viscoelastic half-space. 
In the present study we consider the action of a normal moving load that is suddenly applied 
to the free surface of a viscoelastic layer. By Laplace and Fourier integral transformations 
we obtain a solution in the form of a uniformly converging series based on longitudinal and 
transverse waves reflected in the layer. By means of inverting the transforms by the meth- 
od discussed in [4, 5], we obtain an exact solution for the stress field in the medium under 
investigation. We consider the special case of a viscoelastic medium of Boltzmann type, 
for which we obtain a numerical realization of the solution on a digital computer. 

We are given a layer  of thickness h of a v iscoelas t ic  mater ia l  of Boltzmann type, covering the half- 
space z > h. The layer  is r igidly fastened to the half -space.  At t ime t = 0, to the surface of the layer  z = 
0 there is applied a load P0, distr ibuted along the y axis and moving along the x axis with constant  velocity 
c 0. The problem of finding the s t r e s s  field in a v iscoe las t ic  layer  reduces  to integration of the equations 

I o%x Ov~= O~u 
--gUx § --$U = p  a t e ,  
a . c .  x o(r  . a2w 

(1) 

where u and w are the displacement  components along the x and z axes,  respect ively ,  and 

~ =  = [za (t - ~) - Q~ ( t - ~ ) l  ~ -~ o-5-') + 2[~8 (t - ~) - Q~ (t - ~)1 ~ d~; 

0 

(2) 

t 
I {ou, , o,  \ 

Xxz = [~t5 (t - -  x) - -  Q2 (t - "01 \-g~-z -? o'-T,-) d% 
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where Ql(t) is the kernel of the volume relaxation; Q2(t) is the kernel 
of the shear  relaxation; ~ and/~ are the Lam~ constants;  ~) is the den- 
si ty of the medium; and 6(0 is a delta function. Equations (1) are  
solved for the boundary conditions 

azz = -  Po6(tco - -  x), Iz =0, (3) 
~ z =  O, 

where z = h is the r igid coupling of the media.  The initial conditions 
are  homogeneous.  

We introduce into considerat ion the potential of longitudinal 
waves cp and the potential of t r ansve r se  waves ~. The solution of the 

formulated problem is found by the method of Laplace integral  t ransformat ion  with respec t  to time t, and 
bi la teral  complex Four ie r  t ransformat ion  with respec t  to the variable x: 

(ct, s; z) = Ae -w-" + BeV,*; 

T (a, s; z) = Co -v'~ + De TM 

(for the notation, see [5]). For  the purpose of studying the success ive  reflection of waves f rom the bound- 
ar ies  of the layer ,  the potentials of the longitudinal and t ransverse  waves are represen ted  in the form [6] 

~, + .+(~, ~; z) 
(I) (~, Z) S; 

,=,n=o . . . .  o (4 )  

~,  + ~ 
(a, s; z) ---- , b+ne-12 (a, s; z) + z.~V b'~ne-f2(a, s; z), 

Wtpn~O ~Z,n~O 

where 

/+ ---- mh,]i + nhy~ - -  "~lz - -  iax; 

] ~ =(m-- l )  h'~i + nh?2 + "~i z - -  i~zx; 

]+ = mhy i  + nh']2 - -  y2z - -  iax;  

1 2 =  mhy i  + (n - -  J) by. 2 + y~z -- iax.  

For  the coefficients • =~ amn and b m n  we can obtain recurs ion  relat ions,  using the boundary conditions (3), 
Eq. (2), and the representa t ion  of the potentials in the fo rm (4). 

For  convenience in the investigations, the s t r e ss  field ~Id found in the t r ans fo rm sp.ace is divided into 
the par ts  ffk~ a n d S ~  (k = x, z; I = x, z), due to waves propagating f rom the free boundary of the layer  to 
the boundary of the media and f rom the boundary of the media to the free surface of the layer,  respect ively:  

- -~  j= i  

where 

�9 .~-J)  = r163 -er ( m + , ~ + O ) .  
t';,Z,rt = 0  

For  the t e rms  P _ we obtain recurs ion  re la t ions;  the initial t e rms  P!-]) are presented in [5]. Inte- 
IIILI [~ 

grals  along the rea l  ~ axis of the complex plane are  replaced by approximate contour integrals .  A subst i-  
tution of var iables  is made so that by integrating with respec t  to the corresponding variable,  we obtain the 
s t r e s se s  due to the potentials of the longitudinal and t r ansver se  waves:  

a : a ~ = s v j a ] p j ,  (]=i ,  2), 

where 
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The in tegra t ion  is c a r r i e d  out a s suming  that  [3] 

~ ~ -~- C 0 1 1 8 t .  

t 
�9 $ 

Following [4], we introduce a new vamabl,~ T, having d imensions  of t ime  and allowing us to c a r r y  out the 
in tegra t ion  only f r o m  the m om en t  of a r r i v a l  at the point be ing cons idered  of the f ront  of the cor responding  
wave 

i} (~, s; z) = ,, (] = ~, 2). (5) 

The ve loc i ty  of the moving load is  a s s um ed  to be subse i smic ,  and the contour of in tegra t ion  is de fo rmed  
so that  it does not enclose  poles  and b ranch  points ,  which allows us to e l iminate  r e s idues  f r o m  the so lu-  
tion. 

Af ter  t r a n s f o r m a t i o n  in the contour in tegra l s  to the va r i ab le  T and use  of the genera l  fo rmula  of in- 
v e r s i o n  of Laplace  t r a n s f o r m s ,  the s t r e s s  f ield is r e p r e s e n t e d  in the f o r m  

(~:, (r, O; t) = p~176 H (T --  zfi) p(~j) @ f ~  Fj (pj, ~, t) p ' Jd~+  
- ~ -  0 " ~ - - 7  l,J 

d ~2 Ov v~ ' 

where  H(t) is the Heavis ide function, v = a 2 / a l ,  tan0 = z /x ,  and 

tpj+ z'~ ; F ( p , T , t ) = L  - I  e-sv~a'~ . 

ajrj a~u2 

Op~/0T and 0p + / ~ - ,  and the l imi t s  T. ~ and r~ of the var ia t ion  T for  the contours  of in,- The  de r iva t ives  
tegra t ion  a r e  de te rmined  ~ a f te r  solution of Eq. (5) for  Jthe new va r i ab l e  pj.  

Determining  the functions F as a function of speci f ic  re laxa t ion  ke rne l s ,  the s t r e s s  f ield in the l aye r  
is found by the summat ion  

To numer ica l ly  r ea l i ze  the obtained solution we choose the following re laxa t ion  functions: 

Q~ (t) = Ae ~o ~_..L_. 
T i - - ~  ' 

The Calculations a r e  c a r r i e d  out in the d imens ion le s s  p a r a m e t e r s  

a~T--~; =-F~-o a~,; T = - - .  '1o= ~ ;  • ----~'" •  
T O ~ CO ~ {Z I 
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with account of the threefold passag e of longitudinal and transverse waves through the layer.  

Figure 1 shows the s t resses  Pxx and Pxz for T0 = 0.5; 

7~ 
%----2; •  7----2; H----3; 0 = ~ - .  
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