VISCOELASTIC LAYER UNDER THE ACTION
OF A MOVING LOAD
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Recently, problems concerning the dynamic behavior of imperfect continuous media under var-
ious types of actions have been widely investigated., The method of Laplace transformation is
very convenient for describing physical processes concerning unsteady phenomena, In vig-
coelastic media two complications are added: the representation of the properties of a med-
ium depending on time, and the inversion of the obtained solutions containing this additional
complication. Certain approximate methods of inversion in the analysis of viscoelastic stresses
are discussed in [1]. In [2, 3] a discussion is given for an effective method of constructing

the solution of unsteady problems for finite and for infinite imperfect media using auxiliary
functions, and a solution is presented for a half-space, Making use of the idea of the inver-
sion of transforms, discussed in [4], in [5] a solution is obtained and a complete picture is
presented for the dynamics of the variation of the stress field in a viscoelastic half-space,

In the present study we consider the action of a normal moving load that is suddenly applied

to the free surface of a viscoelastic layer, By Laplace and Fourier integral transformations
we obtain a solution in the form of a uniformly converging series based on longitudinal and
transverse waves reflected in the layer. By means of inverting the transforms by the meth-
od discussed in {4, 5], we obtain an exact solution for the stress field in the medium under
investigation, We consider the special case of a viscoelastic medium of Boltzmann type,

for which we obtain a numerical realization of the solution on a digital computer.

We are given a layer of thickness h of a viscoelastic material of Boltzmann type, covering the half-
space z > h, The layer is rigidly fastened to the half-space. Attime t = 0, to the surface of the layer z =
0 there is applied a load P, distributed along the y axis and moving along the x axis with constant velocity
¢y. The problem of finding the stress field in a viscoelastic layer reduces to integration of the equations
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where u and w are the displacement components along the x and z axes, respectively, and
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035, /’ !-\ where Q,(t) is the kernel of the volume relaxation; Q,(t) is the kernel
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where z = h is the rigid coupling of the media. The initial conditions
are homogeneous.

Fig. 1 We introduce into consideration the potential of longitudinal
_ waves ¢ and the potential of transverse waves . The solution of the
formulated problem is found by the method of Laplace integral transformation with respect to time t, and
bilateral complex Fourier transformation with respect to the variable x:
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(for the notation, see [5]). For the purpose of studying the successive reflection of waves from the bound-
aries of the layer, the potentials of the longitudinal and transverse waves are represented in the form [6]
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For the coefficients “lﬂ;m and binn we can obtain recursion relations, using the boundary conditions (3),
Eq. (2), and the representation of the potentials in the form (4).

For convemence in the investigations, the stress field le found in the transform space is divided into
the parts ¢y and g Ukl (k =x, z;! =x, z), due to waves propagating from the free boundary of the layer to
the boundary of the media and from the boundary of the media to the free surface of the layer, respectively:

where
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For the terms ﬁgﬁm we obtain recursion relations; the initial terms P(—]) are presented in [5]. Inte-
grals along the real « axis of the complexplane are replaced by approximate contour integrals., A substi-
tution of variables is made so that by integrating with respect to the corresponding variable, we obtain the
stresses due to the potentials of the longitudinal and transverse waves:
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where
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The integration is carried out assuming that [3]
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Following [4], we introduce a new variabl, T, having dimensions of time and allowing us to carry out the
integration only from the moment of arrival at the point being considered of the front of the corresponding
wave

fFlasiz)=1, (j=1,2). (5)

The velocity of the moving load is assumed to be subseismic, and the contour of integration is deformed
so that it does not enclose poles and branch points, which allows us to eliminate residues from the solu~
tion,

After transformation in the contour integrals to the variable 7 and use of the general formula of in-
version of Laplace transforms, the stress field is represented in the form
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where H(t) is the Heaviside function, v = a,/a,, tan = z/x, and
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The derivatives BpfE /67 and 8p* /87, and the limits 7 and 7* of the variation T for the contours of in-
tegration are determined after solution of Eq. (5) for he new variable pj.

Determining the functions F as a function of specific relaxation kernels, the stress field in the layer
is found by the summation

— +
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To numerically realize the obtained solution we choose the following relaxation functions:
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The calculations are carried out in the dimensionless parameters
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with account of the threefold passage of longitudinal and transverse waves through the layer.

Figure 1 shows the stresses Py, and Py, for 1, = 0.5;
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